

Edition 1.0 2019-07

INTERNATIONAL STANDARD

Semiconductor devices – Semiconductor devices for energy harvesting and generation – Part 6: Test and evaluation methods for vertical contact mode triboelectric

INTERNATIONAL ELECTROTECHNICAL COMMISSION

energy harvesting devices

ICS 31.080.99

ISBN 978-2-8322-7165-0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	4		
1 Scope			
Normative references			
3 Terms and definitions			
3.1 General terms			
3.2 Triboelectric transducer			
3.3 Characteristic parameters			
4 Essential ratings and characteristics			
4.1 Identification and type			
4.2 Limiting values and operating conditions			
4.3 Additional information			
5 Test method	10		
5.1 General	10		
5.2 Electrical characteristics			
5.2.1 Test procedure			
5.2.2 Open-circuit voltage			
5.2.3 Short-circuit current	13		
5.2.4 Output voltage	14		
5.2.5 Output current	14		
5.2.6 Output power	15		
5.2.7 Optimal load impedance	15		
5.2.8 Maximum output power	15		
5.2.9 Stored charge	15		
5.2.10 Capacitance	16		
5.3 Mechanical characteristics	17		
5.3.1 Test procedure	17		
5.3.2 Contact area	17		
5.3.3 Input force	18		
5.3.4 Input frequency	19		
5.3.5 Relative humidity range			
5.3.6 Temperature range			
Annex A (informative) Vertical contact modes	21		
A.1 Double electrode mode	21		
A.2 Single electrode mode	21		
Annex B (informative) Test setup for vertical contact mode triboelectric energy			
harvester			
B.1 Example of test setup and characterization			
B.2 Experimental data			
Bibliography	24		
Figure 1 – Vertical contact mode triboelectric energy harvester7			
Figure 2 – Fundamental theories of four working modes of vertical contact mode			
triboelectric energy harvester8			
Figure 3 – Equivalent circuit of triboelectric energy harvester9			
Figure 4 – Measurement procedure of vertical contact mode triboelectric energy harvester	11		

Figure 5 – Test setup for the electrical characteristics of vertical contact mode triboelectric energy harvester
Figure 6 – Instantaneous open-circuit output voltage characteristics
Figure 7 – Instantaneous short-circuit output current characteristics
Figure 8 – Output voltage and current of triboelectric energy harvester under different loads
Figure 9 – Output power of triboelectric energy harvester at various external loads15
Figure 10 – Stored charging time relationship at different load capacitances of triboelectric energy harvester
$Figure \ 11-Capacitance \ between \ the \ two \ electrodes \ of \ a \ triboelectric \ energy \ harvester \ \dots 16$
Figure 12 – Block diagram of a test setup for evaluating the reliability of vertical contact mode triboelectric energy harvester
Figure 13 – Instantaneous open-circuit voltage characteristics for four different contact areas of contact mode triboelectric energy harvester
Figure 14 – Output voltage and current under different input forces on vertical contact mode triboelectric energy harvester
Figure 15 – Output voltage and current under different working frequencies on vertical contact mode triboelectric energy harvester
Figure 16 – Triboelectric output voltage as a function of relative humidity20
Figure 17 – Open-circuit voltage of triboelectric energy harvester at different temperatures
Figure A.1 – Operation mode of vertical contact mode triboelectric energy harvester21
Figure B.1 – Measurement setup for vertical contact mode triboelectric energy harvester
Figure B.2 – Electrical characterization results of the pressure-voltage relationship23
Table 1 – Specification parameters for vertical contact mode triboelectric energy harvester 10

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES – SEMICONDUCTOR DEVICES FOR ENERGY HARVESTING AND GENERATION –

Part 6: Test and evaluation methods for vertical contact mode triboelectric energy harvesting devices

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62830-6 has been prepared by IEC technical committee 47: Semiconductor devices.

The text of this standard is based on the following documents:

FDIS	Report on voting
47/2573/FDIS	47/2585/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62830 series, published under the general title *Semiconductor devices* – *Semiconductor devices for energy harvesting and generation,* can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

SEMICONDUCTOR DEVICES – SEMICONDUCTOR DEVICES FOR ENERGY HARVESTING AND GENERATION –

Part 6: Test and evaluation methods for vertical contact mode triboelectric energy harvesting devices

1 Scope

This part of IEC 62830 defines terms, definitions, symbols, and specifies configurations and test methods to be used to evaluate and determine the performance characteristics of vertical contact mode triboelectric energy harvesting devices for practical use. This document is applicable to energy harvesting devices as power sources for wearable devices and wireless sensors used in healthcare monitoring, consumer electronics, general industries, military and aerospace applications without any limitations on device technology and size.

2 Normative references

There are no normative references in this document.